Efficient Weight Learning for Markov Logic Networks
نویسندگان
چکیده
Markov logic networks (MLNs) combine Markov networks and first-order logic, and are a powerful and increasingly popular representation for statistical relational learning. The state-of-the-art method for discriminative learning of MLN weights is the voted perceptron algorithm, which is essentially gradient descent with an MPE approximation to the expected sufficient statistics (true clause counts). Unfortunately, these can vary widely between clauses, causing the learning problem to be highly ill-conditioned, and making gradient descent very slow. In this paper, we explore several alternatives, from per-weight learning rates to second-order methods. In particular, we focus on two approaches that avoid computing the partition function: diagonal Newton and scaled conjugate gradient. In experiments on standard SRL datasets, we obtain order-of-magnitude speedups, or more accurate models given compara-
منابع مشابه
Markov Logic Networks: Theory, Algorithms and Applications
Most real world problems are characterized by relational structure i.e. entities and relationships between them. Further, they are inherently uncertain in nature. Theory of logic gives the framework to represent relations. Statistics provides the tools to handle uncertainty. Combining the power of two becomes important for accurate modeling of many real world domains. Last decade has seen the e...
متن کاملMax-Margin Weight Learning for Markov Logic Networks
Markov logic networks (MLNs) are an expressive representation for statistical relational learning that generalizes both first-order logic and graphical models. Existing discriminative weight learning methods for MLNs all try to learn weights that optimize the Conditional Log Likelihood (CLL) of the training examples. In this work, we present a new discriminative weight learning method for MLNs ...
متن کاملKnowledge Unit Relation Recognition Based on Markov Logic Networks
Knowledge unit (KU) is the smallest integral knowledge object in a given domain. Knowledge unit relation recognition is to discover implicit relations among KUs, which is a crucial problem in information extraction. This paper proposes a knowledge unit relation recognition framework based on Markov Logic Networks, which combines probabilistic graphical models and first-order logic by attaching ...
متن کاملDiscriminative Structure Learning of Markov Logic Networks
Markov Logic Networks (MLNs) combine Markov networks and first-order logic by attaching weights to first-order formulas and viewing these as templates for features of Markov networks. Learning the structure of MLNs is performed by state-of-the-art methods by maximizing the likelihood of a relational database. This can lead to suboptimal results given prediction tasks. On the other hand better r...
متن کاملTractable Learning of Liftable Markov Logic Networks
Markov logic networks (MLNs) are a popular statistical relational learning formalism that combine Markov networks with first-order logic. Unfortunately, inference and maximum-likelihood learning with MLNs is highly intractable. For inference, this problem is addressed by lifted algorithms, which speed up inference by exploiting symmetries. State-of-the-art lifted algorithms give tractability gu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007